Tecres spacers are temporary implantable devices, indicated to replace temporarily a joint prosthesis removed as a result of a septic process. The spacers are made of gentamicin bone cement and they release antibiotic into the surrounding tissues to help the treatment of infection. The spacer have standardised mechanical and pharmacological properties. They have to be removed maximum 6 months after their implant.

The spacers allow:
» Maintenance of joint space and mobilisation;
» Effective in situ release of gentamicin antibiotic;
» Deambulation with partial weight-bearing*;
» Facilitation of definitive re-implant surgery;
» Reduction of functional recovery time after the intervention of definitive revision.

* Partial weight-bearing must be assessed on an individual basis in relation to the anatomic condition, bone trophism and clinical conditions of the patient during rehabilitation stages.

In particular, one should avoid the risk that excessive weight-bearing or forced mobilization cause the structure of the spacer to damage the bone tissue.
DESCRIPTION

Spacer-G resembles a femoral prosthesis. It is made of a load-bearing structure in AISI 316L stainless steel coated with gentamicin bone cement. Spacer-G is inserted into the femoral canal and the acetabular cavity following removal of the previous implant. When a distal anchorage is required - in absence of proximal support, in presence of large metaphyseal defects or after a trans-femoral approach - the extra-long stem version (XL) is indicated.
SURGICAL TECHNIQUE

All access routes to the hip can be used for insertion of the device. Clean the host site with Ringer solution or saline before inserting Spacer-G; in particular eliminate, wherever possible, all residues of cement left by the previous implant.

Fit the stem of Spacer-G into the diaphyseal canal of the femur, making sure that:
- the protruding edge of the Spacer-G rests on the residual margin of the cortex resected at the inter-trochanteric level;
- the tip of the stem does not rest on any obstacles present inside the diaphyseal canal.

Reduce the head towards the acetabular cavity. When the bony acetabular roof is well-preserved, it may provide direct support for the head of Spacer-G. In case of instability a proximal cementation of the neck may be performed.

If large areas of bone resorption are evident, it is possible to take advantage of the residual support of the acetabular roof on the neck of Spacer-G, which is specially profiled for this purpose.

ORDERING INFORMATION AND DIMENSIONS

<table>
<thead>
<tr>
<th>REF.</th>
<th>DESCRIPTION</th>
<th>A (mm)</th>
<th>B (mm)</th>
<th>C (mm)</th>
<th>D (mm)</th>
<th>Gentamicin (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPC46/G</td>
<td>Spacer-G Trial (three-size set)</td>
<td>46</td>
<td>54,5</td>
<td>96</td>
<td>-</td>
<td>1,1</td>
</tr>
<tr>
<td>SPC54/G</td>
<td></td>
<td>54</td>
<td>60</td>
<td>94</td>
<td>-</td>
<td>1,9</td>
</tr>
<tr>
<td>SPC60/G</td>
<td></td>
<td>60</td>
<td>73</td>
<td>98</td>
<td>-</td>
<td>3,0</td>
</tr>
<tr>
<td>SPC46/GXL</td>
<td></td>
<td>46</td>
<td>54,5</td>
<td>211</td>
<td>10</td>
<td>1,3</td>
</tr>
<tr>
<td>SPC54/GXL</td>
<td></td>
<td>54</td>
<td>60</td>
<td>209</td>
<td>10,5</td>
<td>2,1</td>
</tr>
<tr>
<td>SPC60/GXL</td>
<td></td>
<td>60</td>
<td>73</td>
<td>211</td>
<td>11</td>
<td>3,2</td>
</tr>
</tbody>
</table>

To select the right size to be implanted there are the templates and the trial spacers available.
DESCRIPTION

Spacer-K resembles an ultra-congruent condylar knee-prosthesis. It consists of two articulating independent elements.

The tibial component has a flat base upon which the femoral component articulates.

Spacer-K is applied on the femoral condyles and on the tibial plate following removal of the previous implant. Both components are to be fixed with bone cement.
SURGICAL TECHNIQUE

Spacer-K is generally applied using the medial para-patellar route.

Clean the host site with Ringer solution or saline (pulsed lavage) before inserting Spacer-K. In particular eliminate, wherever possible, all residues of cement left by the previous implant.

The most suitable size is selected on the basis of:

a) dimensions of the removed implant;
b) bone defect;
c) ligamentous apparatus state;
d) flex and extension spaces.

Once the size has been chosen, it is advisable to apply both components without cement and reduce the joint to evaluate stability and joint function.

The two components must be fixed with bone cement. Apply the femoral part first, and wait for the polymerisation of the cement, then proceed with the application of the tibial part, avoiding in either cases that excess cement adheres to the articulating surfaces. Reduce eventually the joint before the cement of the tibial part has cured to allow for the self-centering of the tibial component in relation to the femoral one, and keep in extension till complete polymerisation.

Clean the area from any debris.

When the suture and the reconstruction of the extensor apparatus has been completed the knee must be stable, but not too tight, and have a joint excursion ranging from 0° and 90°.

FUNCTIONAL OUTCOME USING SPACER K

Preformed articulating knee spacer in two-stage revision for the infected TKA
Castelli C, Ferrari R
Proceedings of 12th ESSKA 2006, Innsbruck P-326

Range of motion (ROM) of the knee

Pre-op	59°
Between stages	77°
At last FU after 2nd stage	94°

Pre-formed articulating knee spacer in two-stage revision for the infected total knee arthroplasty.
Pitto RP, Castelli CC, Ferrari R, Munro J

ORDERING INFORMATION AND DIMENSIONS

<table>
<thead>
<tr>
<th>REF.</th>
<th>A (mm)</th>
<th>B (mm)</th>
<th>C (mm)</th>
<th>D (mm)</th>
<th>E (mm)</th>
<th>Gentamicin (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPK6054/G</td>
<td>54</td>
<td>40</td>
<td>60</td>
<td>36</td>
<td>16</td>
<td>0.9</td>
</tr>
<tr>
<td>SPK7064/G</td>
<td>64</td>
<td>47</td>
<td>70</td>
<td>42</td>
<td>17</td>
<td>1.3</td>
</tr>
<tr>
<td>SPK8074/G</td>
<td>74</td>
<td>54</td>
<td>80</td>
<td>48</td>
<td>18</td>
<td>1.8</td>
</tr>
</tbody>
</table>

To select the right size to be implanted there are the templates and the trial spacers available.

<table>
<thead>
<tr>
<th>REF.</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPK03</td>
<td>Spacer-K Trial (three-size set)</td>
</tr>
</tbody>
</table>
BIBLIOGRAPHY

Preformed acrylic bone cement spacer loaded with antibiotics: use of two-stage procedure in 10 patients because of infected hips after total replacement
Magnan B, Regis D, Biscaglia R, Bartolozzi P

SICOT San Diego (USA) – Aug. 2002
Preformed all-cement knee spacer in two-stage revision for infected knee replacement; mechanical and pharmacological behaviour
Castelli C, Robotti PF, Colonnello G

ISTA Oxford (UK) - Sept. 2002
Two-stage non-cemented revision of infected total hip prosthesis
Romano C, Romano D, Meani E

AAOS New Orleans (USA) – Feb. 2003
A preformed antibiotic-loaded acrylic cement spacer in two-stage revision of infected total hip arthroplasty
Magnan B, Regis D, Facci E, Modena M, Bartolozzi P

EFORT Helsinki (FIN) - June 2003
Preformed all-cement knee spacer in two-stage revision for infected knee replacement: early clinical results
Castelli C, Martinelli R, Ferrari R

Investigations on the wear behaviour of the temporary PMMA-based hip spacer-G

Hip International /Vol.13 n°3, 2003 / pp.159-162
The mechanical behaviour of a preformed hip spacer
Baleani M, Traina F, Toni A

SECA Gijon (ESP) – June 2003
Utilización de espaciador en infeccion de arthroplastia total de cadera.
Salvador J, Matamala A, Asunción J, Ferrer H

AOA Adelaide (AUS) – Oct. 2003
Articulating spacer in two-stage revision of the infected total knee replacement

DGU Berlin (GER) - Nov. 2003
Infekt nach Prothesenimplantation im hohen Alter: Casereport über die Behandlung von 2 Patienten mit “Spacer” (Platzhalterprothese) und antibiotischem Zement
Marchesini A, Martinotti L, Klumpff R

Release of gentamicin and vancomycin from temporary human hip spacers in two-stage revision of infected arthroplasty
Bertazzoni Minelli E, Benini A, Magnan B, Bartolozzi P

Antibiotic-loaded bone cement spacers in two-stage management of infected total knee arthroplasty
Pitto RP, Spika IA

Successful treatment of total hip and knee infection with articulating antibiotic components: a modified treatment method.
Evans RP

EBJS Lubiana (SLO) – May 2005
Two-stage reimplantation for severe prosthetic device infections using antibiotic-impregnated cement spacer
Casalino-Finocchio G, Riccio G, Sandrone C et al.

Two-stage revision surgery to treat an infected hip implant. A comparison between a custom-made spacer and a pre-formed one.
D’Angelo E, Negri L, Zatti G, Grassi FA.

AAOS Chicago (USA) – March 2006
Strategy and Results of two-stage treatment for the Infected TKA
Castelli C, Ferrari R

Springer-Verlag; February 2007 ISBN: 978-3-540-47998-7
Infection and local treatment in orthopaedic surgery
Meani E, Romano C, Crosby L, Hofmann G (Eds.)

EFORT Florence (ITA) - May 2007
Measurement of in vivo intra-articular gentamicin levels from antibiotic loaded articulating spacers
Mutimer J, Lovering A, Gillespie C, Porcuos A

Clin Orthop Relat Res. 2007 Nov;464:164-78. Review
Technique and timing of two-stage exchange for infection in TKA.
Burnett RS, Kelly MA, Hansen AD, Barrack RL.

Static and Mobile Antibiotic-impregnated Cement Spacers for the Management of Prosthetic Joint Infection.
Jacobs C, Christensen CP, Berend ME.